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Abstrllct-A two-dimensional elcctrodastic analysis is performed on a transversely isotropic piezo­
electric mah:rial containing def~'Cts. A general solution is provided in terms of comple)( potentials.
with emphasis being placed on stress c\'ncentrations that arise in the vkinity ofcircular and elliptical
ht'les. It is shown that ft'r this genre of prt,olem b\lth mechanical and electrical variables are
responsible for the peak stresses.

I. INTRODUCTION

For decades. pieloelectric ceramics have been the ideal materials used in the 1~lbrication of
electromechanical devices [see Pohanka and Smith (1988) for an updated review]. Their
main disadvantage. however. is their brittkness: piezoceramics have :1 tendency to develop
critical crack growth because of slress concentrations induced by both mechanical and
electrical loads. Yet. defects arc not limited only to cracks: voids. inclusions. dehuninations
and porosities m.lY be present and contribute to l~tillire as welL Because the new major
applications of piezoelectric materials involve larger components under more severe loading
conditions. there is a natural increase of the likelihood or failure. As an example one can
cite the so-ealled "adaptive strm:tures". rt is. therefore. imperative that an an:t1ysis be
lkvdopcd which is c:lpablc ofdescribing phenomena such as mechanisms th'lt trigger crack
propagation in piezoelectric media. as well as stress behavior in the vil.:inity of holes or
inclusions.

In a recent article Sosa and Pak (1990)t study the inl1uence that electri<.: ficlds have on
the distribution of stresses in the neighbourhood of a <.:ra<.:k embedded in a transversely
isotropic piezoelectric material. The analysis is carried out for the particular case of a crack
with its leading edge assumed to be straight and parallel to the poling direction (or mds of
transverse isotropy). as is shown in Fig. Ia. The study reveals that ncar the crack the stresses
contained in the x-y plane arc idependent of the electric field. This is not true. however.
for the shear stresses in the ;-direction. It is concluded in the study that electromechanical
interaction is strongly inlluenced by the crack's orientation.

The present work has been motivated by the aforementioned article ~tnd represents an
intermediate step towards developing a des<.:ription of crack propagation in piezoelectric
media. Towards this end we consider the same material as that referenced by Sosa and Pak.
Our point of departure. however. will be two-fold: (I) the defect is no longer a crack. but
a cylindrical cavity of elliptical shape: (2) the generator of the cylinder (which in the
particular case of the crack becomes the crack front) is along an axis otha than the axis of
transverse isotropy. as represented in Fig. Ib. This new defect orientation poses m:tth­
ematical dilliculties not present in previous analyses which can be circumvented by resorting
to a two-dimensional model. In this manner we arc lead to a more complete and interesting
coupling phenomenon between the mechanical and the electrical variables.

A plane strain formulation of the piezoelectric problem solved within the formalism
of the complex variables technique is provided. While some work has been done in the
area of fmcture mechanics of piezoelectric materials. in particular from an experimental
standpoint. it appears that only the work of Dceg (1980) has theoretic:llly addressed the

t The articlc also provides a review of the thcQrctical and e)(periment.ll rcseareh perft'rIllcd in this area.
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Fig. Ilal. Piezoelectric material with a crack whose leading edge is parallel to the puling direction.
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Fi~. 1(0'. I'iewclectric 11l'lterial with a eylillllri"al cavit)" whose ~clleratllr is pcrpendicul.ll" to the
polillg directiun.

problem of defects other than cr'lcks. t AlLhaugh the theory developed in this article is
'Ipplicablc to the study of the cmck problem, our attention will rightly be focussed on
the study of stress cOIl<.:entrations around c:lliptical and circular hoks. which will indude
quantifying the clrect that the c:lectrieal vari,lbks have on these stresses. The crack probkm
will be studied independently and presented elsewhere.

2. GOVERNI:-JG EQUATIONS

The theory of piezoelectricity consists of the simultaneous study of deformations and
electric fields ex.isting in ,misotropic. nonconducting dustic media. The description of the
piezoelectric el1ect is achieved by means of two mech.lllical ,llld two electrical vari,lbks:
the stmin and stress tensors and the electric field and electric displacement vectors denoted
by f:,/. G i " E: and D" respectively. As a conscquence, there ure four possible munners of
describing electromechanical interaction. In theoretical analyses it is customary to choose
a representation in which the stmin and electric field arc the independent variables. In
ex.perimental unalyses. however, constitutive rclutions bearing the stress and the electrical
field as independent variables arc preferred. In the end the choice is dictated by the particulur
problem th,lt one has in mind. The present study makes usc of a form in which stresses and
eh:ctric displ<lcement <Ire the independent qU<lntities. Thus. following Berlincourt et (II.
(1964), we write

t til C(llltrast. the proolcm of a ';;Ivity embedded ill an ehlstic isotropic dielectric has heen treated more
e:'ttensivcly. See Me~.keking (19l\9) for references.
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(I)

where S~kl is the compliance tensor of the material measured at zero electric displacement.
9,,, is the piezoelectric tensor. and tr.. is the dielectric impermeability tensor measured at
zero stress. Although (I) is not the most widely used form of constitutive relation. it proves
to be quite convenient when formulating two-dimensional boundary value problems.

In the M KS system the aforementioned variables are measured in the following units:

[e1=mm- l. [0'1= Nm-:. [E]=Vm-'=NC- ' . [D]=Cm-:=NV-'m- '

[sDj=m:N- I
. [g]=VmN l=m:C- I • [fJ"l=Nm:C Z=VZN I. [<p]=V

where <P represents the elt'Ctric potential given by E = - grad <p. As previously mentioned
in the Introduction. we will focus on transversely isotropic piezoelectrics. In such a case.
and with reference to the coordinate system shown in Fig. I. eqn (I) takes the following
matri~ representation:

r::: 1
SI' so t ~ s, ) 0 0 0 (1" 0 0 fIll

s, ~ SIt SI) 0 0 0 (j r~' 0 0 .'I.,
I::: S'1 S\1 S, \ 0 0 0 (1" 0 0 51 \.1 {~:l= + (2a)1~"

0 0 0 SH 0 0 (1.. ,. 0 fI, , 0

~J;_.\ () () 0 () 0 0 0
D,

SI4 ('f:, fI, \

.:!I: q
() () () () () s", (1, , () 0 ()

where

SOh = 2(slI-·\',J

and

(1,,\

r'} c() 0 0

~)
(1",

C"
0

°W'l
gil

E, = - 0 0 0 0
(1::

+ 0 fl" o D,. (2b)g,1

E, fiJI 0 0
0':"

0 0 II JJ D:g1l 9\.1
0':x

IT,q'

From (2) it is clear that no coupling e~ists between the mechanical and electrical variables
contained in the xy plane. A more complete st~lte of electromechanical interaction can be
observed by reducing (I) into a two-dimensional model. Since. according to (2). the x-y
plane is the isotropic plane. one can employ either the x--= or the y -= plane for the study
of planc c1cl:trolllcchanical phenomena. Choosing the former. the plane strain l:onditions
require thatt

which allows us to write

r.",. = r.", = 1:". = E" = 0 (3)

t We ooserve that the condition E. '" 0 leads to (!Ii, +Pll.fu)D, '" 0: however. since the quantity in
parentheses is ditferent fWIIl lem we ootain D, = O.



H. SOSA

(-l )

Substituting (3) and (-l) into (2) yields the plane strain constitutive equations. To minimize
notation we introduce the following definitions:

.I" 1:.1" IJ
GI: = 513- --­

5 11

(5)

which are known as the reduced material C(/flStaflfs. An additional step towards compactness
in notation is achieved by renaming the coordinates such that x -+ XI and =-+ x:. Hence.
the two-dimension<t1 constitutive equations can now be written as

{"lC"
al:

o){""} C :~:) {~;}f.:: - al: (l ~ ~ o CT" + 0

21:1: 0 0 a" CTI: hi'

r'l} (0 0 ""){""} c" o )r)l}
E: = - h: 1 h" o CT" + 0 c'i" /):'

(1'1 :

(6a)

(60)

For a cllmplete formul:ttion of the pil.:zm:lectric prohlelll WI.: nl.:ed to supplement (6) with
tlHO I.:quations of elastic equilibriulll and Gauss' Law of Ell.:ctrost;ltics. which in two dimen­
sions and in the ahsence of hody forces and frcc elcctric voluml.: charge arc givcn hy

I~/) I to,
(
","'1 + , . = o.

, I'X:
(7a c)

Furthermore. the strain and electric field components satisfy the compatihility n:h1tions

(Xa.o)

The solution to thc system of equations furnished by (6)-(8) is sought hy means of a
stress function V(x J, x:) which satislies the c1i1stic equilihrium Clltliltions whcn dclincd as

DXl iJx l'
(9)

In addition. we introduce an induction function I/I(XI.X:) sut:h that

( 10)

which satislies (7c). Ncxt. introducing (9) and (10) into (6a). and later into (8a) leads to

where the commas denote differentiation. Similarly. substituting (9) and (10) successin:ly
into (6b) and (8b) yields
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Equations (II) and (12) can be expressed in compact form by writing:

L~U-L}t/J=O

L}U+L;t/J=O

~95

(12)

(13)

where L, (i = 4.3.2) are differential operators of order four. three. and two. reflecting the
elastic. piezoelectric. and dielectric properties of the material. respectively. and given by

( 14)

Thus. the plane piezoelectric problem is governed by a system of two partial differential
equations coupled in U and t/J. If we eliminate t/J. (13) is reduced to a single sixth order
partial diffen:ntial equation for the stress function. namely

( 15)

or written explicitly

( 16)

Equation (16) can be solved by means of complex variablest : we express the solution by
means or a function V(=) ddined as

V(=) = V(x, +ILX1). IL = a. + ilJ. i = J-=' ( 17)

whae =is a generalized complex variable. IL is a complex parameter. and a. and If arc real
numbers. By introducing (17) into (16). and using the chain rule of differentiation. an
expression of the form {. }VII = 0 is obtained. A nontrivial solution follows by selling the
characteristic equation (that is. the quantity endosed within braces) equal to zero. namely

II I I (i I liLt. + (ll I 115 11 + 211 11 i5 1, + It, 115 I I + h ~, +hi 1+ 2h11 h I J)(IL~ + (el 1215 I I + 2L111J 11 + II J JJ 12

+2h2Ih22+2hl3h22)IL2+(Ll11J22+h~2) = O. (18)

Owing to the particular material symmetry of the piezoelectric under investigation. the
polynomial is expressed in terms ofeven powers of IL. This allows us to solve (18) analytically.
rendering

where /f l ':;(1 and If 1 depend on the material constants. Once the roots ILk. k = 1.2.3 are
known. the solution is written as

t We e~tend the ideas developed hy lekhnilskii (1981) in the framework of anisotropic e1aslicily.
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U(XI"X-:) = 2Jf L U.(=k).= , (20)

(21 )

and .7f denotes the real part of a given complex ex.pression. The next step is to find the
function t/J using one of the equations (13). Ifwe consider L 3U = - L:t/J. assuming solutions
of the form (/(x, +1/,x:) and t/J(x, +1/I;X:). we obtain

(22)

where

(23)

Integration of (22) yicldst

(24)

where

(25)

Thus. the solution for the electric induction becomes

.1 )

Ip(X"X:) = 2.11 L t/J.(=.> = 2.Jf L ;'kU~(=d·
k ~ I k ~,

Alternatively. we could have obtained t/J by using L~U = L)lp.lcading to

(26)

But i.k{Jtd = I.k{JI.). since by (18). U(ttk)e5(t1k) +h:{tt.) = 0; hence the same function l/J. is
obtained.

With the aid of (20) and (26) we C'lIl write expressions for the stress and electric
disphlcement components. Towards this end and in order to reduce the order of the
derivatives. it is convenient to introduce new functions (Pk of the complex variable =
(hen:after called the complex potentials) which arc defined ~IS

(27)

where k = 1.2.3. and no summation is implied over repeated indices. The usc of (9). (20)
and (27) leads to the stress components

t The arbitrary constant_ of integration can be set equal to lero. If they are retained. they ean he emhedded
in the linear and constant terms of cqn {44I.
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3 3 J

all = 2.Jt L 1J.;CP~(=k)' a:: = 2.Jt L cp~(=.). 0'1: = -2Jf L 1J.kCP~(=.)· (28)
k~1 k~1 k=1

Likewise (10). (26) and (27) yield

J

D , = 2.jf L i·k1J.kCPk(=k).
k~1

J

D: = - 2Jt L i.kCPk(=.)·
k=1

(29)

Finally. using the constitutive equations in conjunction with (28) and (29) allows us
to find expressions for the elastic displacement. the electric field and the electric potential.
The results are summarized below.

The components of strain result in

Using the strain displal:el11ent relationship

1:,/ = ~ (1I,.j +"/.,)

the integration of the normal strains renders

(30)

(31 )

1

III = 2.Jf L I'k 1pd=.)+wX:+llo•
k - 1

1

II! = 2.11 L '1k IPd=k)-WXI +1'0
k-I

(32)

where the constants w. 110 and 1'0 represent rigid body displacements and

a I ! IL; +a1! - h 1! i'k'1k = -----.--.--------.
ILk

(33)

Similarly. using (28) and (29) in conjunction with (6b) gives the components of the
elect ric field:

J

£1 = 2." L {hll+Jlli·.}ILkCP~.
k. I

£1 = -2Ji L {h11/Ll+h11+J2:i..},p~.
k.1

(34)

Finally. integration of E = - grad q, leads to the electric potential:

J

q, = -2.Jt L {hIJ+JII)..}1J.kIPk+q,O
1;.1

(35)

where IP" is a reference potential.
Recapitulating. the plane strain piezoelectric problem has been reduced to one of

finding three complex potentials. CPl' IP2 and CPJ, in some region n of the medium. Each
potential is a function of a different generalized complex variable =k = X1+ ILkX2' Alter­
natively. the complex potentials can be viewed as functions of the ordinary complex variable
=k = X\k l+ iX~k) where
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(36)

Using this point of view the functions cP I. CP: and cp) must be determined in regions U I' U:
and U" respectively. obtained from U by the affine transformations (36).

We should note. however. that the problem as formulated is still undetermined. The
complex potentials need to be determined subject to certain boundary and jump conditions
on the boundary (or surfaces of discontinuity) (~U. The piezoelectric boundary conditions
are of mechanical nature (prescribed elastic displacement uor surface traction f) and of
electrical nature (prescribed electric field or electric displacement). Thus. calling 2U•. tn,..
tuo and (~n.1> the parts of the boundary tu where t. u. 0 and 4> are prescribed. we can write
in the most general case (see Eringen and Maugin. 1989)

un = T on (~UI

u=u ontUu

n'[O] = 11',. on tUn

[4)~=() on ('U", (37ad)

where II',. is a prescrihed surface charge density and n is the outward unit normal to ('U, We
note that 07d) is a conselluence of

IIxl[E~ =0 and E = -gradt/l.

If we impose houndary and jump conditions in terms of t and n only (as will be done
in the present study). we can write

(~u f'" = - I: ds.
( .\ , "

(~u = _ f' I, ds. If; = - f' D" ds
('lx,,, "

(3S)

where I, ~lnd (: arc the rectangular Cartesian components of t. 0" is the normal component
of D. ano os is an clement of arc length on tn. Or in terms of the complex potentials we
can rewrite (3S) as

1 f'2.:1 L i.• (pd=d = - D" ds.
• ~ 1 II

(39)

J. INFI:-,:ITE PIEZOELECTRIC MEDIUM WITH AN ELLIPTICAL CAVITY

Consider an infinite space filled with transversely isotropic piezoelectric material and
containing a hole of elliptical shape. The axes of the cavity of length 2a and 2b arc assumed
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Fit:. :!. Elliplil:al hole in an infinite piezoek'l:tril: medium.

to be placed along the axes or clastic symmetry of the material as shown in Fig. 2.
Furthermore. call r the boundary of the hole with outward unit normal n. Mechanical or
electrical loads applied at remote distances from the hole induce deformations and electric
lields in the region or space 0 tilled with m'ltter described by (6). The induced or applied
fields also exist in the region inside the cavity Old (filled with vacuum) described by the
constitutive relation

(40)

where 1:0 is the dielectric constant (or permittivity) of vacuum (I:u =M.M5 x 10 11 N V 1).

In Old the governing equation is simply the two-dimensional Laplace equation;

(41 )

and the normal component of the electric displacement can be expressed as

The depicted situ.ltion constitutes a two-domain boundary value problem. Hence, ont.'C the
ekctric displacement and electric potenti.t1 are found in both 0 and 0 1<', the electric
boundary conditions become

(42)

where the quantities on the left-hand side of (42) arc evaluated within the piezoelectric. A
significant simplification to the original two-domain problem is achieved by neglecting the
surroundings (the vacuum in this case) ofO. This process is permissible lx'C.luse the diellxtric
constants in the piezoelectric material arc significantly larger than £'0' Consequently,
assuming th'lt II', =0, the boundary conditions at the surface of a traction-free cavity can
be expressed as (see also Pak, 1990)

t=O
on r.

D'n =0

(43)

The problem is now merely reduced to one of finding the complex. potentials in the region
O. Towards this end we assume a general solution of the form
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where A ic , At, Bk , B: are real constants and

k = I, 2, 3 (45)

is a holomorphic function up to infinity with real coetlkienb ll~kl. The boundary conditions
enforced at the rim or the hole require that A" + iA: = 0 for <Pk to be singh: valued.
Furthermore. the constant Bic and B:' arc determined from the far field loading conditions,
as is described at the end of this section.

To find the holomorphic functions we make use of (9). with their right-hand sides set
equal to zero. That is

2.;1 L <Pic = 0,
"~I

\ .\

2.;1 L Ilk ({I, = 0 2.:1 L i., ({I, = 0
, ~ I k" I

(46)

or substituting the general expression for w, :
.I

2.:1 L <{l2 = - 2.# L (B, + iB/')':k
,- ~ I k • I

\

2.:1 L Ilk <{l2 = - 2.:1 L (11k+i 11,*) il'':k
( 1 ( I

(47)

Equation (47) can be solved for ({l2 by means of a conformal transformation whieh
maps the exterior of three ellipses (one for each root JI,) contained in the ':k plane into the
exterior of the unit circle (0I'boundary ,') located in the C.-plane. The relevant transformation
is (see Lekhnitskii. I{)KI)

(48)

Note that both =. and " travel on rand ,', n.:spectivdy, in a counterclockwise scns!.:.
Furthermore. the three points on the contours of Ok map iOlO a singk point on the contour
of the unit circle. which is t.kscribed by (k = a = e'''. 0 ~ (/ ~ 2n:. Assigning u notation of
([)~)( Cd to the functions <pt(=d after (48) is applied, the boundary conditions (47) become

\

L (112(a) + (Tlll(t:i') = T,a+/la 1

k ~ I

where

.I

L 11,(I);L(a)+Jl.(TI~)(t:i') = T"a+l"a I

"·1,
2: i ... (II~'(t1)+;'k<TI2(t:i') = T,a+I,a-(

Ie ~ I

,
I( = L [-aU.. +i(fIkm'-'J.kBd"l

k I

1

I" = 2: {({lkBk*-'J.klJdll+i[({l;-'J.;)IJ.. +21.kI1kl1tlh}
Ie (

(49)

.I

1.1 = L {(lkB,*-RkBda+i[(I'{:k-R,'1.,)B,+(lk'1.k+Rdh)BtJhl (50)
k~1
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with TI • T: and T, being their complex conjugates. To solve (49) for the functions <1>~ we
multiply both sides by dO' 0' - ~ and integrate over ~'. where ~ is any point outside the unit
cin:k. By observing that

we obtain

(51 )

I.:

,:,) {:~} = {~~} ~.
t., tI>, /,

(52)

Solving for Ihe funclion (1l~'. and regarding Cas ~. when k takes the values I. 2 or 3. we can
express the solution as

where t\ I I. t\ I:' etc.. arc the dements of the matrix

(53)

).: -).\

)'\-)'1

)'1 -).:

JI\ - J1:)
JII -II,

II: - JII

(54)

I-'inally. to obtain If>1'(:.>. (53) is inverted by substituting each (. by

• :. +./:F.... '(a!+JI{h1) a+iJI,"
~, = ... ,.~. -~'--._--. = .. , '-'''~-''~--'--'----''

a-IJI," :k-J;r~(-;'1'+/tfh1)

yielding the three complex potentials

(55)

(56)

To determine (J and D. the derivative of (57) with respect to :k is evaluated. which
results in

To solve for the constants B•. Bt. one must invoke the remote electromechanical
loading conditions. In the most general case. three mechanical and two electrical variables
can be enforced. If these loads are the stress and electric displacement components. by
making usc of (2X). (29) and (5X) when 1=I .... x. a system of five equations in the six
unknowns B•. Bt is obtained. Without loss of generality one can arbitrarily set one of these
constants equal to 7.ero. Thus. in the remainder of this article it is assumed that Br = O.
Otherwise. a sixth equation can be formulated in terms of the remote rigid rotation. That
is. one can impose the condition 2(1) = 1/:.1 -III.: = O. as 1=1 .... 00. Once explicit solutions
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for Bk and B: are obtained in terms of the remote load and material properties. it is a simple
matter to show that (50) renders

(59)

That is. [I' I~ and l, depend on the applied load and the geometry of the cavity. In the
following section. the stress distribution around elliptical and circular holes will be found
in terms of the complex potentials given by (57).

.s. EXAMPLES

In this section it is assumed that the piezoelectric medium is a PZT·4 ceramic with
material constants that can be found in Berlincourt c/ al. (1964). The corresponding reduced
material constants obtained from (5) are

all=l'.205xlO·l~ al~=-3.144xI0 '~. a~~=7.495xlO I~

h ll -16.62x 10 I. h~~ = :!3.96 x 10 '. h'.1 = 39.4 x 10 l(m~C I)

iii I = 7.66 X 10 7
• ii~~ = 9.X:! x 10 7 (V~ N I).

To apprcciate the order of magnitude of the variahies involved in this type of prohlem
we note that the poling prol.:ess in l.:eramil.:s (thaI is. the prol.:ess through which the piezo­
elcctril.: ell"ed is induced) takes place at elel.:tril.: field levels of 10" V m I. rurthermore.
typil.:~11 applkations involve elel.:trkal displacements of the order or lOl to 10 ~ C m ~.

while the stresses can vary between 10" and 101 N m· 2.

As a closure for the theory developed in the previous seclions two examples arc
presented which can be regarded as of fundamental importanl.:e in drawing conclusions
about the theory of elcctroelastil.:ity with dcl"el.:ts.

Example I. The elastic alltl e!cctroe!astic cases
Quite often it has been claimed that stress analyses in piezoeleetrics can be implemented

neglecting the ctl'el.:t of lhe electrical variables. As evidence. note that it is not unusual to
find fral..'tun: ml..'chanics analyses in piezoelectricity based on conventional approaches drawn
from the theory of elastkity. While this approach certainly simplifies the study. it may also
produce misleading results. Moreover, discrepancies tend to become more pronounced for
stress levels ncar l.:rack lips or cavities. The purpose of this example is to exhibit the
dilTercnces that may arise when using a purely clastic model versus an c1ectroclastic model.

Consider the elliptical cavity shown in Fig. 2 with boundary conditions given by (43).
For simplification we consider f~lr field mechanical loading in the xI-direction: 0-1,1) =1'.
We look for the stresses along the x~-axis. and. more specifically. the maximum values at
X~ = h.

If in (6) we neglect the terms containing the electrical variables. the problem is reduced
to one of purely anisotropic elasticity governed by L4 U = O. Using a procedure similar to
the one described in Section 2. we look for two complex potentials and subsequently
compute the stress component (1,,- The results arc displayed in the second column of Table
I for four different ratios of a/h.
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Taole l. Values of(lTlI)m".P (at x, = h)

tJh Elastic Elt-ctroelastic % Diffcrencc

3 1.622 l.7·n 7.5
I ~.870 3.230 12.5

1 3 6.610 7.700 16.5
1.10 19.7 23.26 (s.o

503

If under the same loading conditions the electrical terms are retained. the problem falls
in the domain of the theory described in Sections 2 and 3. Solving for the three potentials
and the corresponding stresses for this electroelastic case leads to the results shown in the
third column of Tabk I. The last column in the table provides the percentage differences
between the purely elastic and eh..'Ctroclastic cases at the point of maximum stress. Note
that these differences are by no means negligible. which clearly indicates that a stress analysis
should take account of both electrical and mechanical etfects.

Example 2. The circular hole
We use this simple conliguration to illustrate stress and electric field variations at the

rim of the hole when remote mechanical or c1ectricalload is applied in the xz-direction. In
this case it is convcnient to introduce polar coordinates. Thus. letting =4 = r(cos (1 +Jl4 sin 0).
r ~ a. 0 ~ (} < 2n:. the applied far field load. the boundary conditions and the complex
potentials can oe expressed as

(T, = (f,/ = D, = () 011 r = 1I

Figlll'es 3 and 4 depict the distrioution of (ft/ and Dt/. respectively. normalized with
respect to the applied load. The following ooservations are made: (I) oecause of anisotropy

2

Ot---.:-::--~r--:-=--~r----..,,..,,...-----

Fig. 3. 11" variation on the rim 01':1 circular hole subjceted to remote mechanical loading.

:?
0

'" 2-" 00:-

Pig. 4. n" variation on the rim of a circular hole subjected to remote mechanical loading.
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Fig. 5. E. and E" variations on the rim of a circular holt' subjl:cted to remote mechanical loading.
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':: ,:::l 15 3
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Fig. 6. (1" variali'lIl on the rim of a circular twk suhjccted III rcmotc cb:lril':llloadmg.

~. -::I ,
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·2 -

fig. 7. Dol variation on the rim of a circular hole suhjected to rcmolc dcctricalloading.

the maximum value of the hoop stress is almost 16(~;, less than the maximum stress when
a load in the xI-direction is applied (sec Table I); (2) the maximum values of (1" occur at
iJ = 0 , 180', while D" reaches its maximums at () = 65 . 114 '. The components of the
induced electric field arc shown in Fig. 5. Observe that according to the present norma­
lization. applied stresses of order 10 7 N m - I induce electric displacements of order 10 .1 C
m _. ~ and electric fields of order 10 j V m' I.

When an electrical load in the form of D II is applied it will produce stresses and an
electric field. Figures 6 and 7 show the normalized values of (1" and D". respectively, while
Fig. 8 represents the distribution of the components of the electric field. It is clear that an
applied electric displacement of order 10 -.1 C m - ~ produces stresses of order IOh N m . ~

and electric fields of order 10 5 V m - '. Furthermore. we note that while D" and E/I are
maximum at 0 = 0 '. 180 , a" achieves its maximum at () = 90 .
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FIg. ll. E. and E,l vanallons on the rim of a circular hole subjl:\:ted to remote electrical loading.

Obviously. other loading conditions can be analysed. At this point. however. it is of
more fundamental importance to pursue qualitative results. rather than present a collection
of diverse loading and geometric configurations.

5. CONCLUSIONS

A plane strain piezoelectric problem has been formulated and solved by means of
complex vari'lbles theory, The analysis shows that stresses. displacements. electric field
components. etc.• can be expressed in terms of three complex potentials.

A derivation of these potentials has been illustrated by means of a problem in which
an elliptic.1I cavity is embedded in an infinite piezoelectric medium, Within this context.
possihle loading and boundary conditions have also been discussed. Furthermore. it has
been shown that stress analyses in the vicinity of a hole can produce incorrect results if
electrical elll:cts arc not taken into account.

..r""1I(I"·I,,d'W"1<'1II -The author wishes to acknowledge th'lt this work was suppurled by the National Science
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