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Abstract—A two-dimensional electroctustic analysis is performed on a transversely sotropic piezo-
electric material containing defects. A general solution is provided in terms of complex potentials.
with emphasis being placed on stress concentrations that arise in the vicinity of circular and clliptical
holes, It is shown that for this genre of problem both mechanical and electrical variables are
responsible for the peak stresses.

L. INTRODUCTION

For decades. piczoelectric ceramics have been the ideal materials used in the fabrication of
electromechanical devices [see Pohanka and Smith (1988) for an upditted review]. Their
main disadvantage. however, is their brittleness : piczoceramics have a tendencey to develop
critical crack growth because of stress concentrations induced by both mechanical and
clectrical loads. Yet, defects are not limited only to cracks : voids, inclusions, delaminations
and porositics may be present and contribute to fuilure as well, Because the new major
applications of piczoclectric materials involve larger components under more severe loading
conditions, there is a natural increase of the likelihood of failure. As an example one can
cite the so-called “adaptive structures™. It is, therctore, imperative that an anualysis be
developed which is capable of deseribing phenomena such as mechanisms that trigger erack
propagation in piczoclectric media, as well as stress behavior in the vicinity of holes or
inclusions,

In a recent article Sosa and Pak (1990)% study the influence that clectric ficlds have on
the distribution of stresses in the neighbourhood of 4 crack embedded in a transversely
isotropic piczoclectric material, The analysis is carried out for the particular case of a erack
with its leading edge assumed to be straight and parallel to the poling direction (or axis of
transverse isotropy), as is shown in Fig. 1a. The study reveals that near the crack the stresses
contained in the x-y plane are idependent of the electric ficld. This is not true, however,
for the shear stresses in the z-direction. It is concluded in the study that electromechinical
interaction is strongly influenced by the crack’s orientation.

The present work has been motivated by the aforementioned article and represents an
intermediate step towards developing a description of crack propagation in piczoclectric
media. Towards this end we consider the same material as that referenced by Sosa and Pak.
Our point of departure, however, will be two-fold : (1) the defect is no longer a crack, but
a cylindrical cavity of elliptical shape: (2) the generator of the cylinder (which in the
particular case of the crack becomes the crack front) is along an axis other than the axis of
transverse isotropy, as represented in Fig. Ib, This new defect orientation poses math-
ematical difficultics not present in previous analyses which can be circumvented by resorting
to a two-dimensional model. In this manner we are lead to a more complete and interesting
coupling phenomenon between the mechanical and the clectrical variables,

A plane strain formulation of the piczoclectric problem solved within the formalism
of the complex variables technique is provided. While some work has been done in the
area of fracture mechanics of piczoclectric materials, in particular from an experimental
standpoint, it appears that only the work of Decg (1980) has theoretically addressed the

T The article also provides a review of the theorctical and experimental research performed in this area.
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Fig. tia). Piczoelectric material with a crack whose leading edge is parailel to the poling direction.

Fig, 1{b). Prezoclectric material with a cylindrical cavity whose generator is perpendicular to the
poling direction.

problem of defeets other than cracks.t Although the theory developed in this article is
applicable to the study of the crack problem, our attention will rightly be focussed on
the study of stress concentrations around elliptical and circular holes, which will include
quantifying the effect that the clectrical variables have on these stresses. The crack problem
will be studied independently and presented elsewhere,

2. GOVERNING FEQUATIONS

The theory of piczoclectricity consists of the simultancous study of deformations and
clectric ficlds existing in anisotropic, nonconducting clastic media. The description of the
piczoelectric effect is achieved by means of two mechunical and two electrical variables:
the strain and stress tensors and the electric ficld and electric displucement vectors denoted
by &,. o, E and D,, respectively. As a consequence, there are four possible manners of
describing clectromechanical interaction. In theoretical analyses it is customary to choose
a representation in which the strain and electric ficld are the independent variables. In
experimental analyses, however, constitutive rclations bearing the stress and the electrical
ficld as independent variables are preferred. In the end the choice is dictated by the particular
problem that onc has in mind. The present study makes usc of a form in which stresses and
electric displacement are the independent quantities. Thus, following Berlincourt et al.
(1964), we write

+1In contrast. the problem of a cavity embedded in an clastic isotropic diclectric has heen treated more
extensively, See McMoecking (1989) for referenees.
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€, = ShGu+ G, Di

E = -guou+BiD: (h
where s%,, is the compliance tensor of the material measured at zero electric displacement,
g.., is the piezoelectric tensor, and 8} is the dielectric impermeability tensor measured at
zero stress. Although (1) is not the most widely used form of constitutive relation, it proves
to be quite convenient when formulating two-dimenstonal boundary value problems.

In the MKS system the aforementioned variables are meuasured in the following units:

l=mm~'. [6]=Nm~°, [Ej]l=Vm~'=NC"', [DjJ=Cm "=NV-'m™!
"l=m"N-'" [gl=VmN'=m’C™'. [f]=Nm'C*=V'N"' [¢]=V
where ¢ represents the electric potential given by E = —grad ¢. As previously mentioned

in the Introduction, we will focus on transversely isotropic piezoelectrics. In such a case,
and with reference to the coordinate system shown in Fig. I, eqn (1) takes the following
matrix representation:

Ce ) (5 S¢2 o 5;: 0 0 0) (o) F0 0 gy
. S & oy 000 Gy 0 0 gu D
£, AN IR N AEWY () O 0 ﬂ':: 0 0 ‘C] 13 o
< > o= >+ D (Qw)
21:,‘ ] 0 ] Nis 0 0 a.. ] Yis {) )
2., 0 0 0 0 s 0] |a. g 0 o |
L2, L0 0 0 0 0 s lo,] L0 0o 0]
where
Son = 2(.3';; -5 :)
and
fg\'\‘
al‘l
L, 0 O 0 0 g5 0 - i O 0\ (D,
Et==10 0 0 g5 0 0] : L0 p 0 XD, (2b)
L. g Yn gun 0 0 0 a:p 0 0 B/ LD,
\Gx’t‘,}

From (2) it is clear that no coupling exists between the mechanical and electrical variables
contained in the v -y plane. A more complete state of electromechanical interaction can be
observed by reducing (1) into a two-dimensional model. Since, according to (2). the x-y
planc is the isotropic plane, one can employ cither the x-z or the y -2 plane for the study
of plane clectromechanical phenomena. Choosing the former, the plane strain conditions
require thatt

b =Ly =6, =E,=0 (3)

which allows us to write

+ We observe that the condition £, = 0 leads to {gi,+f,,5:00, = 0; however. since the quantity in
parentheses is different from zero we obtain 2, = 0.



494 H. Sosa

1
0, = — ‘;““[51:\7“ +sl}6::+‘q,‘!D.‘]' (4)
21

Substituting (3) and (4) into (2) yields the plane strain constitutive equations. To minimize
notation we introduce the following definitions:

iz 12813 Sis
Gy =Sy= "~ Q== —T—-, 4= ST . da =S
i kI P
- pE 3 N !l.il R
o= (l - ‘j—)yn. brx=gyi— ==gu. bii=gis. O, =0 O =But+— (D)
S S i

which are known as the reduced material constants. An additional step towards compactness
in notation is achicved by renaming the coordinates such that x — x, and - — x,. Hence,
the two-dimensional constitutive equations can now be written as

En g =lda: dn 0 jqonpHL 0 by D (6a)
2, 0 0 dw/ gy, hl\ 0 )
E (0 0 h.‘> o +(15n 0) D, "
[':: B ,)“ /’3: 0 72 0 ()‘_.: [): ’ (’ )
ays

For a complete formulation of the piczoclectric problem we need to supplement (6) with
the equations of clastic equilibrium and Gauss™ Law of Electrostatics, which in two dimen-
stons and in the absence of body forces and free electric volume charge are given by

(q'()'” 0”].‘ (10'13 (7()':_- DI)l l“'[)_\
I N Ry} (7 ¢)
[BA N X [EAW (SR €Ny (S

Furthermore, the strain and electric ficld components satisty the compatibility refations

hi 2 Ad
v 076 R &8y cE, OF,

= (). (Ba.by

oxi  Tox dxs T Oxa 0y

The solution to the system of equations furnished by (6)-(8) is sought by means of a
stress function Uy, x,) which satisfics the clastic equilibrium equations when defined as

Nlpr Ao a2
U U o U
Ty = 37y O = 3oy, 0= = o 9
ax; oxy AN IAS
In addition, we introduce an induction function ¥ (x,, x,) such that
) iy
30/} &
D[ =oaToe D: = (“))
X X

where the commas denote differentiation. Similarly, substituting (9) and (10) successively
into (6b) and (8b) yiclds
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(bis+b:) U+ baUy +0220 (1 +0 Y22 = 0. (12)
Equations (11) and (12) can be expressed in compact form by writing :

L,U~Lwy=0
L. U+L.y=0 (13

where L, (i = 4.3.2) are differential operators of order four, three, and two. reflecting the
elastic. piezoelectric, and dielectric properties of the material, respectively, and given by

~4 4 a4
L ‘o ta + s+ ass) —
s = U3 vy T 2 LK} 3A.3
cxy ex? Oxiéx;
Lozl (b2 +b )--—‘ﬂ Lomou v, & (14)
=P 02+, 3. 1= 0253 133
éxi éx, 0x3 oxi oxs

Thus. the plane piezoelectric problem is governed by a system of two partial differential
equations coupled in U and . If we eliminate ¢, (13) is reduced to a single sixth order
partial differential equation for the stress function, namely

or written explicutly
‘10 ‘1‘h 7(»
((l\\(s_v‘+,,::‘) ‘ +(I||().” ,'+(u:!(5”+2a.1¢521+a“<)';3+2h21h_‘3+2h|‘h_,:)1 4802
T Toxd xS A

o

+((l||().::+zll|:()‘||+ll‘\().||+/)§l+bf_‘+2h)_|b|‘) Ty 4 U=0. (l())
dx3 0.

)

Equation (16) can be solved by meuans of complex variablest : we express the solution by
means ol a function U(z) defined as

UQ)=U(x,+pxy), pu=a+iff, i= \/—l (N

where 2 is o genceralized complex variable, g is a complex parameter, and « and f§ are real
numbers. By introducing (17) into (16). and using the chain rule of differentiation, an
expression of the form {+}U* = 0 is obtained. A nontrivial solution follows by sctting the
characteristic equation (that is, the quantity enclosed within braces) equal to zero, namely

a0 1 (@ Oa 2000y Fandy +b3 +biyv+2ha b )t + (0228 + 24,301+ 43364,
+2b31har+2b3baa)pt + (622822 +b32) = 0. (18)

Owing to the particular material symmetry of the piczoelectric under investigation, the
polynomialis cxpressed in terms of even powers of g This allows us to solve (18) analytically,
rendering

o= pr=a+ifss gy = —aatiffs, pe=g, ps = pe =g (19)
where B, 2, and i, depend on the material constants. Once the roots p, K = 1,2,3 arc

known, the solution is written as

t We extend the ideas developed by Lekhnitskii (1981) in the framework of anisotropic elasticity.
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3
U(xl-x:) = 2.” Z L’k(:k) (20)

k=1

where

I

k= x;“!"#kx: (.Y| +1k".2)+iﬁk-“.‘ (2[)
and A denotes the real part of a given complex expression. The next step is to find the
function ¢ using one of the equations (13). If we consider L,U = — L, assuming solutions
of the form U'(x, + p.x:) and Y (x| + g.x.), we obtain

bu U = —o(u i (22)
where
b)) = (b +bi +heze ) =0 1 +9.,. (23)
Integration of (22) yicldst
i) = A Uiz (24)
where
; by
Alpy) = — e .o #£0. (25)
o)

Thus, the solution for the electric induction becomes
3 h)
(v, xy) =24 z () =24 Z AU () (26)
k=t k=l

Alternatively, we could have obtained ¢ by using L,U = Ly, leading to

W = AUk ;-k(f‘k) = :Ef:k—“;o b(u) # 0, a(p) = ay il + Qay+ay )i +dss.

k
But £,(s1) = 4(s1). since by (18), a()3() + b3 (1) = 0; hence the same function i, is
obtained.

With the aid of (20) and (26) we can write expressions for the stress and clectric
displucement components, Towards this end and in order to reduce the order of the
derivatives, it is convenien! to introduce new functions ¢, of the complex variable -
(hereafter called the complex potentials) which are defined as

dt,
oulz) = Ui = 5+ 27)
d:g

where & = 1,2, 3, and no summation is implied over repeated indices. The use of (9), (20)
and (27) leads to the stress components

* The arbitrary constants of integration can be set equal to zero. If they are retained. they can be cmbedded
in the lincar and constant terms of egn (44).
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3 3 3
G, = A Z #E(ﬂ;(:k). Gax = A z (p/’((:k)- O = =22 Z Hi (p;((:k) (28)
k=1 =1

k=1

Likewise (10). (26) and (27) yield
3 3
=24 Z A (k). D= =2A Z £ Pi(Zk). (29)
- k=1

Finally. using the constitutive equations in conjunction with (28) and (29) allows us
to find expressions for the elastic displucement. the electric ficld and the electric potential.
The results are summarized below.

The components of strain result in

)

i : i Ve
&y =27 Z )(l”[lk+(l|:-‘b:|/.k,'(/)k
k=

-

€2 =24 Y lapi+an—bniie;
k=1

-

2, =24 Y {—dnt b e (30)
k=1

Using the strain displacement relationship
Ly = %(lll.i+lll.l) (3”

the integration of the normal strains renders

R}
wy =22 Y popi(C)toxy+uy, wy =24 Z () —wx, + 0, (32)
k=1 k=1t

where the constants w, uw, and ry represent rigid body displacements and

. ) dys +u“-bn/
Pe=uantan—=bai, g = ‘L}—k_" “' "y (33)
«

Similurly, using (28) and (29) in conjunction with (6b) gives the components of the
electric field

3
k= Z bu+dimer. Ey= =24 Z b2t +baa+ 0224 0. (34)
k=1 k=1
Finally. integration of E = —grad ¢ leads to the electric potential :
)
= =24 Z {b”+(§|1/.k}[lk(pk+¢o (35)
k=1

where ¢, is a reference potential,

Recapitulating, the planc strain piezoclectric problem has been reduced to one of
finding three complex potentials, @, ¢, and @,, in some region Q of the medium. Each
potential is a function of a different generalized complex variable z, = x| + ¢, Alter-
n.xlivcly the complex potentials can be viewed as functions of the ordinary complex variable
2o = X\ 4+ ix® where
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X =x . X =0 (36)

Using this point of view the functions ¢, ¢, and ¢; must be determined in regions Q,. Q.
and Q.. respectively, obtained trom Q by the affine trunsformations (36).

We should note. however, that the problem as formulated is still undetermined. The
complex potentials need to be determined subject to certain boundary and jump conditions
on the boundary (or surfaces of discontinuity) cQ. The piezoelectric boundary conditions
are of mechanical nature (prescribed clustic displacement @ or surface traction T) and of
electrical nature (prescribed electric field or electric displacement). Thus. calling ¢Q,. éQ,.
Qyp and CQ,, the parts of the boundary ¢Q where t, u. D and ¢ are prescribed. we can write
in the most general case (see Eringen and Maugin. 1989)

on=1 oncQ,
u=8& oncl,
n-[D]=w. oncQp

Tpl=0 oncQ, (37a-d)

where e, is a prescribed surfuace charge density and nis the outward unit normal to °Q. We
note that (37d} is a consequence of

nx[E]=0 and ¥ = —grad¢.

If we impose boundary and jump conditions in terms of ¢t and ) only {as will be done
in the present study), we can wrile

‘\,U Al *,U [} ¥
l,‘ = —-j ts ds, f = —f tyds, = — f D, ds (38)
(AW o ©Xy v 1

where ¢, and 1, are the rectangular Cartesian components of t, 1, is the normal component
of D, and ds is an ¢lement of arc length on Q. Or in terms of the complex potentials we
can rewrite {38) as

h s
2.4 Z (Pl.(:k)= “J\ I dy
u

k=l

3 ¥
22 Z ooz = J‘ t) dy
P o

3 ¥
24 Z Aapi(zi) = — f D, ds. (39)

k=1

3 INFINITE PIEZOELECTRIC MEDIUM WITH AN ELLIPTICAL CAVITY

Consider an infinite space filled with transversely isotropic piezoelectric material and
containing a hole of elliptical shape. The axes of the cavity of length 2a and 26 are assumed
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Fig. 2. Elliptical hole in an infinite piczoelectric medium,

to be placed along the axes of clastic symmetry of the material as shown in Fig. 2.
Furthermore. call I the boundary of the hole with outward unit normal n. Mechanical or
electrical loads applied at remote distances from the hole induce deformations and clectric
ficlds in the region of space € filled with matter described by (6). The induced or applied
ficlds also exist in the region inside the cavity Q' (filled with vacuum) described by the
constitutive relation

l)(‘.) = }:"[‘:(‘y) (4())
where «, is the diclectric constant (or permittivity) of vacuum (¢, = 8.85x 10 " NV 7).,
In Q" the governing equation is simply the two-dimensional Laplace equation

Vi =0 (41)
and the normal component of the clectrie displicement can be expressed as

{r}
, o
D¥en= —g, -
vn

The depicted situation constitutes a two-domain boundary value problem. Hence, once the
clectric displacement and electric potential are found in both Q and Q' the clectric
boundary conditions become

D, = —ta 34w 42)

b =P

where the quantitics on the left-hand side of (42) are evaluated within the piczoclectric. A
significant simplification to the original two-domain problem is achicved by neglecting the
surroundings (the vacuum in this case) of Q. This process is permissible because the diclectric
constants in the piczoclectric material are significantly larger than g, Consequently,
assuming that w, = 0, the boundury conditions at the surface of a traction-free cavity can
be expressed as (sec also Pak, 1990)

t=0 (43)

The problem is now merely reduced to one of finding the complex potentials in the region
Q. Towards this end we assume a general solution of the form
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@) = (A +id®) log 5 + (B +iBH)z +9tz). k=1.2.3 (44
where A, A2, B.. B¥ are real constants and
A ai&:! At

” \ 14
(Pi-‘(_‘k)= Z ';":(lif-}- .-s_{,_. I\=l-

neu -k -k

!J
lad

45)
is a holomorphic function up to infinity with real coefficients ¢’ The boundary conditions
enforced at the rim of the hole require that A, +74* =0 for ¢, to be single valued.
Furthermore, the constant 8, and B arc determined from the far field loading conditions,
as is described at the end of this section.

To find the holomorphic functions we make use of (39). with their right-hand sides set
equal to zero. That is

1 3 3
2.,”) Z (P‘( = 0. 2.)’" Z He fpl( = 0 2.;? Z )'k (pk = D (46)
A=t

k=1 k=1

or substituting the general expression for ¢, :

3

- 0

2A Z i
k=1

i
=24 Y (B +iB*):
k-1

1i

3

1

223 g
=1

&

1
=22 Y (B +iBM
«T

1 1
24N Al = =28 Y (B +iBM Az (47
-1

L

Equation (47) can be solved for ¢ by means of a conformal transformation which
maps the exterior of three ellipses (one for cach root g ) contained in the o, plane into the
exterior of the unitcircle (of boundary ¢} located in the -plane. The relevant transformation
is (see Lekhnitskii, 1981)

_a=iyh, atigh |

= bk .-
2 2 i

(48)

Note that both =, and ¢, travel on [N and 3, respectively, in a counterclockwise sense.
Furthermore, the three points on the contours of € map into a single point on the contour
of the unit circle. which is described by { = 0 = ¢, 0 < 8 < 2n. Assigning a notation of
®X(Z,) to the functions ¢ (z,) after (48) is applicd, the boundury conditions (47) become

¥
T W(0)+ (&) = Ta+lo
k=1
3

Y (@) + g D) = Lo+ lo !

k-t
1
T Ao+ AD(F) =To+la (49)
k=1
where
1
I, = Z [—aB, +i( i BE —u B
k=i
1
L=Y (BBY ~ B +i[( i = 20) B+ 20 BE
k=1
1
ly= Z {18F — R BIa+i[(I i — Rix) B+ (Lo + R f)BEND] {50

k=1
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with [;. I. and [ being their complex conjugates. To solve (49) for the functions ®; we
multiply both sides by do ¢ —{ and integrate over ;. where ¢ is any point outside the unit
circle. By observing that

"~ (.) (T)I.‘ - * d 1

J PUD 4o = _amiopzo. | 2945 0. f qd",=0. J %7 amis (S1)
- 0 —wk O =y L 0=y - (G-S)G 5

we obtain

t 1 l o) 1,
oo ope w408 =41

/‘., ).: /:3 (D? 1,‘

—_—

(52)

R

Solving for the function ®;, and regarding ¢ as {, when & takes the values 1. 2 or 3. we can
express the solution as

(
O = [Aa L+ Al +AGL] . k=123 (53)

“k

where AL AL, cte., are the elements of the matrix

Hohy=faky Ay=Ay Hy =
A=[A] = A Jhy =M Ay Av—AL =ty (54)

Ay =ty Av=Ay =
A= (/;.3 —;'\),“l +(;.| —;.,)}l: +(;.| —/..:)[h. (55)
Finally, to obtain (). (53) is inverted by substituting cach {, by

. I+ \/;'f: (@ + pibY) a+iyh
TN i R e (56)
a=iph =R =@ b

yielding the three complex potentials

SR )

Pa(2) = (B +iBF)z +[Ad ], +Ak2[2+Ak.‘Il]-k £1+i/t h
p

(57)

To determine o and D, the derivative of (57) with respect to =, is evaluated, which
results in

| z
(p;(:k) = (Bk +IBA‘)+[/\“/1 +AkZI: +Ak3/‘]‘;+'“;-b {l —_— "':T,'T_é‘f"f ‘;:} . (58)
¢ 2= (@ +uib?)

To solve for the constants B, BF. one must invoke the remote electromechanical
loading conditions. In the most general case. three mechanical and two clectrical variables
can be cnforced. If these loads are the stress and electric displacement components, by
making use of (28). (29) and (58) when |z| = =c. a system of five equations in the six
unknowns B,. 8} is obtained. Without loss of generality one can arbitrarily set one of these
constants equal to zero. Thus. in the remainder of this article it is assumed that Bf = 0.
Otherwise, a sixth equation can be formulated in terms of the remote rigid rotation. That
is. onc can impose the condition 2w = u,; —u, » = 0, as |z| = =c. Once explicit solutions
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for B, and Bf are obtained in terms of the remote load and material properties. itis a simple
matter to show that (50) renders

asyy  bo\Y ac\y  baly aDV ADVT
[ = — == OISt Doy [ = ' bD), s
L 2 2 T2 3 BT Ty (59)

- - - - - <

That is. /i, /; and /; depend on the applied load and the geometry of the cavity. In the
following section, the stress distribution around elliptical and circular holes will be found
in terms of the complex potentials given by (57).

4. EXAMPLES

In this section it is assumed that the piczoelectric medium is a PZT-4 ceramic with
material constants that can be found in Berlincourt et af. (1964). The corresponding reduced
nuaterial constants obtained from (5) are

dgy = 8205x 10 g = 3144 x 10 VP gy, =T7495x 10 ',
ay=193x10 (@ N
by = =16.62x10 *, by =2396x10 ', by =304x10 ‘m*C ")

Sy =7.060x 107, 0, =982 107 (VN ).

To appreciate the order of magnitude of the variables involved in this type of problem
we note that the poling process in ceramics (that is, the process through which the piczo-
cleetric effect s induced) takes place at electric ficld fevels of 10° V m !, Furthermore,
typical applications involve electrical displacements of the order of 10 'to 10 *Cm |
while the stresses can vary between 10% and 10" N m 2,

As a closure for the theory developed in the previous sections two examples are
presented which can be regarded as of fundamental importance in drawing conclusions
about the theory of clectroelasticity with defects,

Lxample V. The elastic and electroelustic cases

Quite often it has been claimed that stress analyses in piezoclectrics can be implemented
neglecting the etfect of the electrical variables. As evidence, note that it is not unusual 1o
find fracture mechanics analyses in piczocelectricity based on conventional approaches drawn
from the theory of elasticity. While this approach certainly simplifies the study, it may also
produce mislcading results. Moreover, discrepancics tend to become more pronounced for
stress levels near crack tips or cavitics. The purpose of this example is to exhibit the
differences that may arise when using a purely clastic model versus an electroclastic model.

Consider the elliptical cavity shown in Fig. 2 with boundary conditions given by (43).
For simplification we consider far field mechanical loading in the x,-direction: ¢\5' = p.
We look for the stresses along the x,-axis, and, more specifically, the maximum values at
X =h,

If in (6) we neglect the terms containing the electrical variables, the problem is reduced
to onc of purely anisotropic elasticity governed by LU = 0. Using a procedure similar to
the one described in Scction 2, we look for two complex potentials and subsequently
compute the stress component ¢4,. The results are displayed in the second column of Table
1 for four different ratios of a/h.
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Tabie L. Values of (6 ), p (al X3 = b)

ab Elastic Electroelastic %% Ditference
3 1.622 1.743 7.5
1 2.870 3.230 12.5

13 6.610 7.700 16.5

11 19.7 23.26 [8.0

[f under the same loading conditions the electrical terms are retained, the probiem falls
in the domain ot the theory described in Sections 2 and 3. Solving for the three potentials
and the corresponding stresses for this electroelastic case leads to the results shown in the
third column of Table t. The last column in the table provides the percentage differences
between the purely elastic and clectroclastic cases at the point of maximum stress. Note
that these differences are by no means negligible, which clearly indicates that a stress analysis
should take account of both electrical and mechanical effects.

Example 2. The circulur hole

We usce this simple configuration to illustrate stress and electric field variations at the
rim of the hole when remote mechanical or electrical load is applied in the x-direction. In
this case it is convenient to introduce polar coordinates. Thus, letting 2, = r{cos 0+ sin 0),
rza, 0<0<2n, the applied far field load, the boundary conditions and the complex
potentials can be expressed as
a =g, or DV =D,

.
N

a=0,=0D,=0 on r=ua
r .
1/)A(I'. ”) = (B‘ +l.”;‘*)l'(L'OS 0 ‘f'[lk sin ”)+[A;‘ |/; 4+ /\kgl: +A‘ \l\] l(CUS (- isin ()).
[

Figures 3 and 4 depict the distribution of e, and D, respectively, normalized with
respect to the apphied load. The following observations are made : (1) because of anisotropy

2 ‘\ /
° 0s 1 !

3

~n

v,

Fig. X a, variation on the rim ol s circular hole subjected to remote mechanical loading.
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=
x 2=
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2

Fig. 4. D, variation on the rim of a circular hole subjected to remote mechanical loading.
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x 10 ¢

Fig. 5. E, and E, variations on the nm of a circular hole subjected to remote mechanical loading.

Fig. 6. a, variation on the rim of a circular hole subjected to remote electrical loading.,

05 1

Fig. 7. D, variation on the rim of a circulir hole subjected to remote clectrical loading,.

the maximum value of the hoop stress is almost 6% less than the maximum stress when
a load in the x,-direction is applied (sce Table 1); (2) the maximum values of o, occur at
¢ =0, 180", while D, rcaches its maximums at (0 = 65, 114", The components of the
induced clectric field are shown in Fig. 5. Obscrve that according to the present norma-
lization, applicd stresses of order 107 N m ~ ! induce clectric displacements of order 10 ' C
m " * and clectric fields of order 10° V.m - ',

When an electrical load in the form of D, is applied it will produce stresses and an
electric ficld. Figures 6 and 7 show the normalized values of g, and D,. respectively, while
Fig. 8 represents the distribution of the components of the electric ficld. It is clear that an
applied electric displacement of order 10~ C m =7 produces stresses of order 10 N .m ~*
and electric fields of order 10° V m~'. Furthermore. we note that while D, and E, are
maximum at § = 0°, 180 , g, achicvces its maximum at § = 90 .
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Fig. 8. £, and £, variations on the rim of a circular hole subjected to remote electrical loading.

Obviously, other loading conditions can be analysed. At this point, however, it is of
more fundamental importance to pursue qualitative results, rather than present a collection
of diverse loading and geometric configurations.

5. CONCLUSIONS

A plane strain piczoclectric problem has been formulated and solved by means of
complex variables theory, The analysis shows that stresses, displacements, electric field
components, cte., can be expressed in terms of three complex potentials,

A derivation of these potentials has been illustrated by means of a problem in which
an clliptical cavity is embedded in an infinite picrzoclectric medium. Within this context,
possible loading and boundary conditions have also been discussed, Furthermore, it has
been shown that stress analyses in the vicinity of a hole can produce incorrect results if
clectrical effects are not taken into account.
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